
Bellman: a program for finding catalysts in cellular automata
Mike Playle, Cambridge, UK

Draft A – 27 April 2013

1 Introduction
Bellman, named after the character in Lewis Carroll's The Hunting of the Snark, is a
program for searching for catalytic interactions in Conway's Game of Life and potentially
other similar cellular automata. Results are derived directly from the automaton's evolution
rule, not generated from a list of candidate catalysts as with previous searchers. The
algorithm uses a “divide and conquer” approach to systematically examine large volumes
of search space by assigning values to previously unknown cells and examining the
consequences. Aggressive pruning of the search tree is used to render large problems
tractable.

In its present condition Bellman is not suitable for use by non-technical users. This
document assumes basic familiarity with standard terminology in Conway's Life and with
compiling and running programs from the Unix command line. Sections 4 and 5 are more
technical and also assume some familiarity with mathematical notation and with software
implementation and optimisation techniques. The reader who just wishes to run searches
without understanding the details should feel free to stop at the end of section 3.

2 Getting Started
Bellman was developed on a 64 bit Linux machine. To compile it, follow the conventional
process of typing "make" and then fixing any errors. It requires the "gd" library for writing
GIF files (on Ubuntu this is provided by the "libgd2-xpm-dev" package). Further guidance
on fixing compile errors is outside the scope of this document.

Once built, this search takes a minute or two and produces 47 results:

$ time ./bellman inputs/test.in

The results produced by this stage are partial - they only contain active catalytic regions,
not entire still lives. The program mkstill assigns values to the remaining cells to produce
a finished pattern that can be viewed in Golly or other Life program:

$./mkstill result000001-4.out
Best answer: 7
Best answer: 5
Best answer: 4
Best answer: 2
#P 5 2
.*......
..*.....
***.....
........
....**..
....*.*.
......*.
......**

As a more interesting example I've also included the input file which found the snark

reflector, as "inputs/snark.in".

3 Reference Manual
The process of searching for catalysts consists of:

• Constructing an input file describing the space to be searched

• Running the searcher to generate candidate catalysts

• Classifying the partial results to eliminate trivial duplicates

• Filtering the partial results to identify potentially 'interesting' catalysts

• Completing the most interesting partial results to produce finished Life patterns

3.1 Constructing an input file

Bellman reads an input file containing:

• a Life pattern whose evolution is to be modified by the catalyst

• some unknown cells, to which Bellman will attempt to assign values

• optionally, some cells which are already part of the catalyst

• filter patterns which must appear at particular times and places in the resulting
catalysed reaction

• parameters used to prune the search space

The format has some similarities with the popular “Life 1.05” format, and can be prepared
in a standard text editor. Lines beginning with a # character set parameters and introduce
patterns; other lines represent the states of cells in regions of the universe.

3.1.1 Pattern definition

This example shows a search for small patterns which react with an incoming glider.

#P 0 0
................
................
......@.........
.......@........
.....@@@........
.........???????
.........???????
.........???????
.........???????
.........???????
.........???????
.........???????
.........???????

The #P at the start of the pattern section sets its origin coordinates; this is followed by a
series of lines which “draw” the pattern using the following ASCII characters:

. Dead cells. Whitespace can be used to represent dead cells too.

* Cells which are live in the catalyst.

@ Cells which are live in the evolving pattern which is being perturbed.

? Cells which may or may not be live in the catalyst. Bellman will output patterns
with values assigned to some or all of these cells.

3.1.2 Filter definition

This example filter tells Bellman to exclude patterns that don't contain a glider travelling
northeast at position (20, 11) in generation 46 of the search result:

#F 46 19 10
.....
.***.
...*.
..*..
.....

These sections are similar to pattern definitions except that they are introduced with a #F
line which provides a generation number in addition to an (x, y) position. Patterns will be
excluded from the search results if their evolving state doesn't match the '*' and '.' cells in
the filter pattern. Filters don't have to be rectangular; use '?' in a filter pattern to indicate a
“don't care” cell which will match any evolving pattern.

3.1.3 Search tree pruning parameters

Various numerical parameters can be used to restrict the amount of search space examined,
thus speeding up the search at the cost of excluding many potential solutions from the
output:

#S first-encounter 24
#S last-encounter 65
#S repair-interval 50
#S stable-interval 8
#S max-live 500
#S max-active 8

The meanings of the various parameters in these sections are:

first-encounter The earliest generation at which the catalyst is permitted to
interact with the evolving pattern. Any unknown cells which
interact with the evolving pattern prior to this generation will
be cleared in the output.

last-encounter The latest generation at which interaction can begin. Catalysts
which don't interact with the pattern before this time will be
excluded from the output.

repair-interval The maximum time that the interaction between the pattern
and the catalyst is permitted to last. The catalyst must return to
its pre-interaction state within this many generations of the
interaction beginning, or it will be excluded from the output.

stable-interval Number of generations for which the catalyst must remain
untouched by the evolving pattern after the interaction ends.

max-live The number of unknown cells which Bellman is permitted to
turn on in its output. Note that this doesn't count cells which
were already on in the input file (those marked as '*' in the
pattern section).

max-active The number of cells in the catalyst which are permitted to

differ from their stable state during the interaction. If more
cells than this change from their stable state then the catalyst is
assumed to be 'exploding' and is excluded from the search.

3.2 Running the searcher

The bellman command-line program reads the input file produced previously and
performs most of the work of the search. Any patterns it finds get written into the directory
you run it from, so you may want to change into a new directory before starting it.

For each result it finds, three output files are created:

result-NNNNNN-T.out The discovered pattern, in the same format as
the input file (with some of the '?' cells replaced
with '.' or '*' as appropriate).

result-NNNNNN-T-partial.gif GIF image file showing the generated catalyst in
its stable, non-interacting state.

result-NNNNNN-T-full.gif Animated GIF image file showing the evolution
of the perturbed pattern.

Every 10 seconds while running, the program will print a summary of the decisions it has
made, which is useful for monitoring its progress and adjusting the input parameters.

3.3 Classifying partial results

The raw output from bellman is not very readable and often contains many near-
duplicates. To make it easier to monitor the progress of the search, there is a script which
produces a summary of the results:

$ python mkhtml.py <path to directory with results>

This will generate an index.html file in the same directory which can be viewed in a
browser.

The script can be run before bellman has finished, and then re-run when more patterns are
found.

3.4 Filtering partial results

This stage of the search selects interesting partial results using a classifier based on a
neural network of approximately 1011 nodes which was generated using a genetic algorithm
over a timespan of several hundred million years. Unfortunately I am unable to reveal
further details of the operation of this algorithm.

3.5 Completing partial results

Bellman only chooses values for cells which actually affect the pattern's evolution.
Unneeded cells remain unknown in the program's output. As a result, most output patterns
are incomplete, containing only the active region of the catalyst; more live cells must be
added to stabilise the edges.

The mkstill command-line program will read bellman's .out files and search for such a
stabilisation. If any exist, it outputs one with minimal population, otherwise it prints “No
solution.” It can be quite slow – it is often much faster to inspect the .out file first and
complete any fishhooks, eater2s etc manually. Also it is sometimes necessary to manually
add additional '?' cells outside the original unknown region, if an active pattern was found

too close to the edge.

Redirecting its output produces a file which can be read by Golly:

$./mkstill result000001-4.out > eater.l
Best answer: 7
Best answer: 5
Best answer: 4
Best answer: 2
$ cat eater.l
#P 5 2
.*......
..*.....
***.....
........
....**..
....*.*.
......*.
......**

It is not uncommon for bellman to produce false positives: candidate catalysts for which
no stabilisation exists.

3.6 Tips and tricks

3.6.1 Iterative deepening

The search space grows rapidly as the repair-interval, max-live and max-active
parameters are increased. Small changes can make the difference between a search which
runs for minutes and one which runs for months. Experimenting with different values for
these parameters is highly advisable in practice. One useful approach is to start with a
parameter set to 1 and run a series of searches, increasing it by 1 each time and monitoring
the run time of the search and the total number of tree prunes performed.

3.6.2 Dealing with the eater2

This common family of catalysts consists of a block that reacts with the evolving pattern
surrounded by a framework of live cells which causes the dying block to reconstruct itself.

When bellman finds an eater2 it is not unusual for it to subsequently find several dozen
more with slightly different supporting frameworks. This causes it to repeatedly re-
examine large volumes of search space that are encountered after the reaction with the
eater2.

Interesting results can often be found more quickly by inserting single OFF cells into the
unknown region. Setting one cell of an eater2's block to OFF is enough to exclude it and all
its many variants from the search.

4 Technical Description

4.1 Partial-knowledge automaton

For any cellular automaton A with N states, there is a corresponding automaton PK(A)
with N+1 states, which is derived by adjoining an additional state to represent cells whose
value in A is unknown. States of PK(A) thus represent sets of possible states of A, and the
evolution of a state in PK(A) can be used to draw conclusions about the evolution of all the

corresponding states of A.

PK(A)'s state transition table contains A's transition table as a subset, representing the
evolution of a cell whose neighbours all have known values. In the case where one or more
of a cell's neighbours has unknown value, all possible states of the corresponding
neighbourhood in A must be considered. If they would all evolve to the same state in A,
then they evolve to the corresponding state in PK(A) too, however if there is any ambiguity
then the neighbourhood in PK(A) evolves to the unknown state. Note that if A is outer-
totalistic then so is PK(A).

Bellman operates primarily by evolving patterns in PK(Conway's Life). However in this
automaton, regions of unknown cells tend to grow at the speed of light, so a fourth
“unknown-stable” state is used to represent cells whose value is unknown but is assumed
to be part of a stable catalyst. This is implemented in an ad-hoc manner by
bellman_evolve() at the same time as it checks for filter mismatches etc.

4.2 Bitslice representation

Modern CPUs generally have 32 or 64 bit wide registers. The CA representation used by
Bellman attempts to make efficient use of the whole width of the register to perform
calculations on 32 or 64 cells of the universe simultaneously. Dividing the universe into
register-width “tiles” results in code which tends to compile into straight-line blocks of
logical and arithmetic operations and conditional moves, with few data-dependent
branches; the theory is that this should result in efficient execution on modern PC CPUs,
with few cache misses or branch mispredictions, though this has not been rigorously
adhered to or benchmarked in detail.

4.3 Backtracking search mechanism

4.4 Changing the evolution rule

The PK(Life) evolution rule and an auxiliary 'stabilisation' rule are implemented as bit-
parallel operations in evolve_bitwise.c. These blocks of code were produced with the
included mkrule.py script, which derives both sets of logical operations from the
behaviour of the life_rule() function, and relies on the espresso Boolean logic
minimiser.

To re-run this step, at a minimum you will have to edit life_rule(), re-run both the
make_3state_rule() and make_stabilise_rule() paths, and cut-and-paste the results
into evolve_bitwise.c.

Supporting rules with B0 or B1 will be more complex. B0 implies that a completely dead
tile will change state on the next generation, an assumption that violates many assumptions
made in the design of the tile-based data structure. Rules with B1 will be easier to support,
but will require the tile structure to be able to expand diagonally, not just orthogonally.

5 Further Work

5.1 Distributed / parallel searching

This approach should be well suited to massively parallel or distributed systems. A quick
initial round of searching can be used to split the problem space into as many subproblems
as desired, which can be farmed out to individual compute nodes for the bulk of the work.

5.2 FPGA acceleration

5.3 Investigate time complexity of the search

	Bellman: a program for finding catalysts in cellular automata
	Mike Playle, Cambridge, UK
	Draft A – 27 April 2013
	1 Introduction
	2 Getting Started
	3 Reference Manual
	3.1 Constructing an input file
	3.1.1 Pattern definition
	3.1.2 Filter definition
	3.1.3 Search tree pruning parameters

	3.2 Running the searcher
	3.3 Classifying partial results
	3.4 Filtering partial results
	3.5 Completing partial results
	3.6 Tips and tricks
	3.6.1 Iterative deepening
	3.6.2 Dealing with the eater2

	4 Technical Description
	4.1 Partial-knowledge automaton
	4.2 Bitslice representation
	4.3 Backtracking search mechanism
	4.4 Changing the evolution rule

	5 Further Work
	5.1 Distributed / parallel searching
	5.2 FPGA acceleration
	5.3 Investigate time complexity of the search

